
Reusability of Software-Defined Networking
Applications: A Runtime, Multi-Controller Approach

Roberto Doriguzzi-Corinα, Pedro A. Aranda Gutiérrezβ , Elisa Rojasγ , Holger Karlδ, Elio Salvadoriα
αCREATE-NET, βTelefónica, I+D, S.A.U., γTelcaria Ideas S.L., δUniversity of Paderborn

Abstract—The Software-Defined Networking (SDN) ecosystem
is still characterized by a multitude of different controller
platforms, each with its own programming model, execution
model, and capabilities. This creates a danger of a controller lock-
in for both developers of SDN control applications and operators
of SDN networks. Since no single controller platform appears to
dominate the ecosystem for the foreseeable future, there is a need
for portability of control applications between different platforms.
We propose an architecture based on executing multiple instances
of different controller platforms concurrently in a network to
provide the SDN code the environment it was written for. It is built
around a controller-independent network event routing element
called Network Engine that provides composition and conflict
resolution. Results obtained in realistic scenarios demonstrate
the feasibility of the proposed approach, which increases both
developer productivity and operational flexibility. A preliminary
prototype of the architecture is available for testing as an open
source project.

I. INTRODUCTION

The current SDN ecosystem is still extremely fragmented.
Different open and closed-source controller frameworks such
as OpenDaylight (ODL) [1], Open Network Operating System
(ONOS) [2] or Ryu [3] coexist and compete in the controller
plane. Thus, network control application developers and ad-
ministrators need to choose a specific platform, which might
not fulfill their requirements completely. This also introduces
uncertainty, because it is not obvious what platform will prevail
in the foreseeable future. However, diversity in an ecosystem
is always an asset and, therefore, easy porting of SDN control
applications between controller platforms is a desirable target.

With this premise, the NetIDE project [4] funded by the
European Commission has set out to introduce a new approach
to SDN application development, where (a) applications can
be reused as building blocks for more complex applications
(i.e. introduce modularity), and (b) existing applications can be
deployed across different controllers, becoming independent of
a particular controller choice. These goals should be achieved
without cost at development time; some additional overhead
at deployment or runtime might be acceptable. In summary,
NetIDE aims at facilitating Network Operators/Administrators
to perform rapid deployment of existing SDN applications
belonging to different controller frameworks directly on their
operational SDN-based infrastructure.

The aforementioned goals, i.e. re-usability for network
applications and cross-platform support, have implications for
the deployment and runtime mechanisms of our architecture.
We propose a novel SDN component called Network Engine
to coordinate multiple SDN controllers, each executing one
or more network control applications and typically based on
heterogeneous controller frameworks. These controllers act
as clients of a server controller, which controls the network
equipment in the network domain.

In the literature, several solutions have been proposed to
handle Network Applications running on the same infrastruc-
ture but implemented for different SDN control platforms.
Hypervisors like FlowVisor [5] and OpenVirteX [6] split the
traffic into “slices”, thus impeding multiple applications to
cooperate in processing the same traffic as a single Network
Application. CoVisor [7] brings together the following fea-
tures: (i) assembly of multiple controllers, (ii) definition of
abstract topologies and (iii) protection against misbehaving
controllers. In particular, it allows the administrator to com-
bine different client controllers in parallel, in sequence, or
in an override/default relationship. However, it has several
limitations, e.g. it makes difficult the adaptation of an SDN
operational set-up by forcing the replacement of a running
SDN controller with a network hypervisor; it can not recognize
when an SDN application has finished processing a network
event, thus potentially leading to network deadlocks.

FlowBricks [8] is designed to compose client controllers,
but it only runs on a emulated environment with heavy
hacks on the OpenFlow switches and cannot be used over
standard network hardware. Corybantic [9] acts as a module
orchestrator, but it requires SDN applications to interface with
it through specific Application Programming Interface (API),
forcing the administrator to modify the applications s/he wants
to reuse from different SDN environments.

Compared to such existing approaches, the proposed Net-
work Engine combines unmodified SDN applications running
on server and client controllers, thus organizing how actions
are processed by the different controllers. The Network Engine
generalizes the notion of “chaining” supported by some con-
trollers, where individual SDN modules can transfer network
events to other modules in the same controller, effectively
creating chains of modules that handle an event. We generalise
these chains by (a) supporting them with explicit and flexible
composition semantics, which (b) the Network Engine can
execute even across multiple controllers. Hence, we allow a
Network Application to consist of modules written for different
controller frameworks.

Beyond demonstrating a fully working architecture lever-
aging on open-source SDN controller platforms, we have
made accessible to the general public both the functional
specifications as well as some platform-independent libraries
to facilitate the implementation of any Network Engine com-
ponent by any vendor willing to adopt such architecture in a
closed-source commercial SDN environment.

The results obtained on a set of tests performed in realistic
scenarios demonstrate that the additional overhead introduced
by the Network Engine at deployment or runtime is acceptable.
In fact, reusing previously developed SDN applications and
components, instead of developing them from scratch for
every scenario, will increase both developer productivity and
operational flexibility.

II. NETIDE NETWORK ENGINE ARCHITECTURE

A high-level view of the Network Engine’s architecture
is represented in Fig. 1. The Network Engine provides to
unmodified SDN applications (called Modules in the figure) the
runtime they expect. Additionally, it implements a composition
mechanism to create new applications from previously imple-
mented modules and to make them cooperate with modules
running on top of the operator’s controller (represented by the
Server Controller in the figure), effectively building a single
Network Application. The latter aspect is the main contribution
of this work and sets NetIDE apart from similar approaches.

Fig. 1: Network Engine architecture.

Our Network Engine follows the layered SDN controller
approach proposed by the Open Networking Foundation in
their SDN Architecture Technical Reference TR-502 [10]. It
comprises a client controller layer that executes the modules
that form the Network Application and a server SDN controller
layer that drives the underlying infrastructure.

The challenge is to integrate client and server controllers.
A first idea is to connect the South-bound Interface (SBI) for
the client controllers to the North-bound Interface (NBI) of
the server controllers. But as these interfaces do not normally
match, adaptation is necessary. This adaptation has to cater
for the idiosyncrasies of the different controller frameworks
we intend to support and has to be implemented for each of
them. To maximize reuse, we use separate adaptors for the SBI,
called Backend, and for the NBI, called Shim. This separation
imposes a protocol between them, the NetIDE Intermediate
Protocol (cf. Sec. II-D).

In our first implementations [11] we have proved that the
Shim/Backend structure connected by an intermediate protocol
is feasible and sensible. However, they still left the fundamen-
tal component in these modules: the composition logic. This
implied that it needed to be re-implemented for each controller
we wanted to support. To overcome this shortcoming, we
introduce an intermediate layer, the Core (cf. Sec. II-A): it
hosts all logic and data structures that are independent of the
particular controller frameworks and communicates with Shim
and Backends using the same NetIDE Intermediate Protocol.
The Core makes both Shim and Backend light-weight and
easier to implement for new controllers.

In the rest of this section we describe the Network Engine
starting with its three main components, namely Core, Shim
and Backend. Then, we introduce what we called fencing, a
run-to-completion scheduling mechanism used by the Core
to perform the composition. Finally, we present the NetIDE
Intermediate Protocol as a means for the Core to drive the
execution flow of the whole Engine.

A. The Core

The Core is a platform-independent component that im-
plements three main functions: (i) interfacing with Backends
and Shim, controlling the lifecycle of controllers as well as
modules in them, (ii) orchestrating the execution of individ-
ual modules or complete applications, possibly spread across
multiple controllers, (iii) handling the symmetric messages
exchanged between modules and network elements.

Fig. 2: Architecture of the Core.

Fig. 2 shows the building blocks of the Core. It leverages on
the NetIDE Intermediate Protocol to interface with Backends
and Shim and to keep track of the modules that compose
the Network Application. The latter operation is accomplished
by the Module Manager, which assigns unique identifiers
to the application modules through a module announcement-
acknowledgement process. These identifiers are used by the
other components of the Core to link messages and modules.

The Core controls all messages exchanged between appli-
cation modules and the network. In this sense, the operations
of the Core can be divided into three categories: (i) handling
the asynchronous events from the network, such as new flows,
port status, flows removed, (ii) composing the configuration
messages generated by the application modules and checking
them for conflicts, and (iii) pairing read-state request messages
and the corresponding replies.

Operations (i) and (ii) are executed by the Composition/-
Conflict Resolution component based on predefined policies
(cf. Sec. III).

With read-state messages we refer to requests issued by
application modules to collect information from the network
(e.g. FEATURE_REQUEST, GET_CONFIG in OpenFlow). The
Core must ensure that the responses generated by the network
for such requests are received by the right module, i.e. by the
module that made the request. OpenFlow uses the Transaction
Identifier (XID) to ease the pairing. However, in the context
of the Network Engine, XIDs are not sufficient, as different
modules may use the same value, effectively making the
reply/request pairing impossible. The Message Tracker avoids
duplicated XID values by replacing the identifiers it finds in
the requests with unique values.

B. Shim and Backend

The Shim is a platform-specific component that translates
the NBI of the server controller to the NetIDE API, thereby
exposing it to the other components of the Network Engine.
Fig. 3 shows the internal architecture of the Shim integrated
in a server controller platform. It includes hooks placed inside
SBIs (small grey boxes in the figure) to route all messages from
the network to the Shim itself, overriding the server controller’s
processing logic.

The Core Connection component handles the communica-
tion with the Core through the NetIDE Intermediate Protocol.
The API Translator converts between NetIDE Intermediate
Protocol and platform-specific NBI messages. The Topology
module provides Network Engine’s upper layers with access
to network topology details and asynchronous updates in case

Fig. 3: Architecture of a Shim.

of changes in the network. Topology discovery is achieved
by interacting with network through the server controller’s
SBI or by retrieving the topology information collected by
specific core components available in advanced controller
platforms (e.g. ONOS and OpenDaylight). Topology details
include datapath_ids, number of supported flow tables,
(administrative and operational) port information and other
properties of the network elements.

The Backend is designed to be an additional southbound
interface for the client controller that interacts with the un-
derlying layers of the Network Engine. Fig. 4 shows the
architecture of a Backend. At boot-time, the Backend starts
the discovery of the application modules running on top of the
client controller (Module Discovery) and registers them to the
Core (Announcement Handler), which, in turn, assigns a spe-
cific identifier (module_id) for each registered module. As
part of its initialization process, the Backend also queries the
Shim for the physical topology. Backends store the topology
information as instances of the network elements (BackendDPs
in Fig. 4) which are exposed to the application modules.

Fig. 4: Architecture of a Backend.

At runtime, Backends use the module_id in the NetIDE
Intermediate Protocol header to tell the Core which module
is sending the message. On the other side, the Core uses the
module_id based on pre-defined policies to indicate which
module handles the event. The Event Handler steers the event
distribution inside the Backend, ensuring events are sent to the
correct module.

Fig. 5 shows a detailed view of our architecture. We include
in it the mechanism we use to integrate modules written for the
server controller framework into our applications. Specifically,
we place a Backend in the server controller to steer the
message flow for the modules composing Network Application
that run on the server controller, exactly like for any other
module running on a client controller. In this case, the modules
can only interact with the Backend, since the other SBIs are
hidden to them by the Shim, as explained in Sec. II-B.

Fig. 5: Detailed Architecture of the Network Engine.

C. Fencing

The way different SDN frameworks, and particularly Open-
Flow, work is that SDN modules receive network events
and optionally produce network commands in response. This
implies that modules may quit silently, without producing any
tangible response. In order to implement application compo-
sition (as described in Sec. III), a prerequisite is to have a
clear notion of when all modules involved in an application
have finished processing a network event. Otherwise, there is
a risk that the Core performs composition operations too early,
i.e. when some modules are still processing the event, or that
it freezes waiting for a response which will never arrive. We
introduced fences, i.e. end-of-execution markers, to tackle this
problem. We require that Backends monitor the execution flow
within the client controllers.

Fig. 6: Fences to delimit transactions.

As shown in Fig. 6, the network event, related net-
work commands and the fence message, all use the same
module_id and nxid values in the NetIDE header so
that the Core can correlate them and create the notion of
a transaction. It starts with an event (e.g. an OpenFlow
PACKET_IN in the figure) sent by the Core to module A
with nxid=1. The module replies with a combination of flow
rules and specific forwarding actions (PACKET_OUT) or with
nothing. The Core supports interleaved communication with
the application modules to improve the performance of the
Engine. In order to preserve the semantic of the network, the
Core ensures that composed output goes back to the network
consistently with the time ordering of events.

D. NetIDE Intermediate Protocol

The NetIDE Intermediate protocol implements the follow-
ing functions: (i) to carry management messages between the
Network Engine’s layers (Core, Shim and Backend); e.g.,
to exchange information on the supported SBI protocols, to
provide unique identifiers for application modules, implement
the fence mechanism, (ii) to carry event and action messages

between Shim, Core, and Backend, properly demultiplexing
such messages to the right module based on identifiers, and
(iii) to encapsulate messages specific to a particular SBI
protocol version (e.g., OpenFlow 1.X, NetConf, etc.) with
proper information to recognize these messages as such.

The NetIDE Intermediate Protocol covers the commu-
nication between the different components of our archi-
tecture: (i) Module advertisement for the client controllers
using the NETIDE_MODULE_ANN, NETIDE_MODULE_ACK
messages (ii) Topology exchange between Shim and Back-
ends using the NETIDE_TOPOLOGY message, (iii) Trans-
action control with the NETIDE_FENCE message, and
(iv) NETIDE_OPENFLOW, NETIDE_NETCONF or others,
to exchange SBI specific messages like OpenFlow packets,
etc. The NetIDE Intermediate Protocol provides a 64-bit
datapath_id field to uniquely identify network elements
when SBI messages are carried. It also provides a 32-bit
module_id to uniquely identify application modules running
on top of each client controller. The composition mechanism
in the Core leverages on this field to implement the execution
flow of these modules. Finally, the nxid field is used in the
context of the fence mechanism (cf. Sec. II-C).

III. APPLICATION COMPOSITION

When composing an SDN application from pre-existing
modules running on different client controllers, the challenge
is to provide “chaining” semantics for client controllers that
may not support it. We borrow the definitions of Sequential
and Parallel operators from [12], [13] to introduce flexible
forms of interaction between the components of a composed
application (so-called execution semantics) and we provide
additional functionality. We will use the processing pipeline
shown in Fig. 7 to illustrate how our concepts are applied in a
NetIDE application composed of several atomic functions or
modules.

Fig. 7: An example for module composition.

A. Composition semantics

In order to provide a flexible and powerful way to reuse
existing modules or applications to build new applications, the
Core executes composed applications from the composition
specifications provided in the application’s execution manifest.
The composition specification defines the modules that are
used in the composition, the flow of execution between them,
and execution semantics with filters and merge policies.

Execution semantics control both the order in which mod-
ules are invoked and their input. Sequential execution invokes
modules in the order defined in the specification. The first in-
vocation uses the original input (e.g. the original PACKET_IN
event, . . . in an OpenFlow environment); each subsequent call
uses the original input modified with the actions returned so
far (e.g. if the first module issued an action to rewrite the
destination address, the next module will receive the packet
with its destination set to the new one as input). Parallel
execution invokes modules in parallel using the same input for
all. Results are combined according to a merge policy when
all invocations have finished.

Filters define matches on packet fields similar to those used
by OpenFlow rules; they select a subset of network events. A
module is only invoked if the input matches the filter (e.g., if
the source address of the packet matches the specified subnet
or if the invocation was triggered by a PACKET_IN event).

A merge policy is a function that maps a set of actions
contained in a flow table modification message (e.g. an Open-
Flow FLOW_MOD) to a resulting set of actions. It is used to
determine how conflicting results are handled. Conflicts can be
flexibly detected; options include checking when the same field
of an action contains contradictory instructions, like drop and
forward (see below for the actual resolution). Standard poli-
cies are discard (ignores any conflicting results by discarding
them), ignore (installs conflicting rules without resolving the
conflicts) and priority (resolves conflicts by picking the rule
with the highest priority out of a set of conflicting rules). Other
merge policies are easy to implement if needed, for example
automatic rewriting of rules by priorities.

Listing 1 shows the composition specification file we would
use for this application. The Modules element (line 2) lists
all modules used in the application. This information prepare
the Network Engine (i.e. start client controllers if necessary)
and start the modules when the new application is loaded. The
ExecutionPolicy element (line 17) defines the execution
flow on network events.

B. Composition Execution

The Core intercepts the control traffic between the network
elements and the client controllers. It receives network events
from the Shim, encapsulated in the NetIDE Intermediate
Protocol (as highlighted in Sec. II-D) and distributes them to
the client controllers through the composition component.

Using the example above in Fig. 7, the execution flow is
as follows:

1) A query is sent to the NAT module using the original
packet as input. For the client application, the query
behaves like a regular OpenFlow PACKET_IN event. The
query returns with a list of actions. These are aggregated
inside the composition component implemented in the
Core.

2) A second query is sent to the L3 forwarding module,
with the original packet, modified with the actions from
the first query, as input (sequential execution seman-
tic). The application might return an empty action set,
which will be interpreted as an explicit drop (cf. the
emptyResultAction attribute). Otherwise, the result-
ing actions are merged with prior results using the default
merge policy (overwriting any conflicting actions with the
newer ones).

3) A copy of the resulting query from the second module
is sent to each of the modules defined inside the subtree
ParallelCall (i.e. L2 forwarding and Monitor). This
query uses the original packet, modified with the actions
aggregated thus far, as input. The results of these two
queries are then merged using the priority policy,
i.e. non-conflicting actions are aggregated as usual and
conflicts are resolved by taking only the action returned
from the application with the highest priority (L2
forwarding, as indicated in Listing 1).

4) The merged actions are installed in the network elements
through the Shim and server controller.

1 <ExecutionManifest>
2 <Modules>
3 <Module id=”NAT”>
4 <Identifier>eu.netide.nat</Identifier>
5 </Module>
6 <Module id=”L3”>
7 <Identifier>eu.netide.l3−forw</Identifier>
8 <Filter>event=packet−in,source=131.23.4.∗</Filter>
9 </Module>

10 <Module id=”L2”>
11 <Identifier>eu.netide.l2−forw</Identifier>
12 </Module>
13 <Module id=”Monitor”>
14 <Identifier>eu.netide.monitor</Identifier>
15 </Module>
16 </Modules>
17 <ExecutionPolicy>
18 <ModuleCall id=”NAT”/>
19 <ModuleCall id=”L3” emptyResultAction=”drop”/>
20 <ParallelCall mergePolicy=”priority”>
21 <ModuleCall id=”L2” priority=”2”/>
22 <ModuleCall id=”Monitor” priority=”1”/>
23 </ParallelCall>
24 </ExecutionPolicy>
25 </ExecutionManifest>

Listing 1: Composition specification example.

IV. IMPLEMENTATION

We implemented the NetIDE Network Engine based on
SDN controller platforms available as Free Open-Source Soft-
ware (FOSS)1. However, we provide functional specifications
[4] and platform-independent libraries [14] to facilitate the
implementation of any Network Engine component by any
vendor planning to adopt such an architecture in a closed-
source commercial SDN environment.

We adopted ODL and ONOS as server controllers, Flood-
light as client controller and Ryu as both. ODL and ONOS
are carrier-grade controllers targeted to service providers,
enterprises and mainstream deployments. Being able to scale
to a large number of network elements, we recognized both
ODL and ONOS as the most suitable SDN platforms for
playing the server controller’s role. On the other hand, Ryu
and Floodlight are aimed at facilitating the rapid prototyping
of SDN applications. We were able to isolate their SBI drivers
to add our Backend alongside, and to hook into their event
dispatching mechanism and drive the execution logic.

ODL and ONOS projects are based on Apache Karaf [15],
so that we implemented the Shims for such platforms in
form of OSGi bundles, leveraging their respective Java NBIs
to interact with the network elements. Both implementations
support OpenFlow versions 1.0 and 1.3 and make use of
serialization methods to convert messages from the controller’s
NBI format into OpenFlow byte arrays before encapsulating
them with the NetIDE header. Vice-versa, deserializers are
used to convert byte arrays contained in the payload of NetIDE
messages (OpenFlow commands) into NBI Java classes. While
for ONOS we could leverage the implementation of seri-
alizer/deserializer methods provided by the OpenFlowJ-Loxi
library [16], in ODL (which uses its own library Openflow-
Java [17]) we had to implement the serializer from scratch
and to extend the existing deserializer in order to cover all
OpenFlow message types.

1Closed-source controllers might be considered as well, but are impractical
to work within a research project.

The Shim for Ryu has been implemented as an application
based on the Python northbound API. It includes serializer and
deserializer methods based on the Python’s struct module [18].

The Backends for Ryu and Floodlight have been imple-
mented by duplicating and extending the existing OpenFlow
SBIs. Following this strategy, we have been able to (i) easily
understand how to distribute the events to (unmodified) appli-
cation modules based on the Core’s directives, i.e. overriding
the default logic of the controller and (ii) intercept the exit
point of event handlers executed by the application modules
and implement the fence mechanism as described in Sec. II-C.

We implemented the Core as a platform-independent OSGi
bundle for Apache Karaf to simplify the overall deployment
procedure of the Network Engine. Recall that both ONOS
and ODL are based on such a framework, therefore Core,
server controller and Shim can be deployed in the same OSGi
container. Message serialization and deserialization in the Core
are based on the OpenFlowJ-Loxi library.

All aforementioned components are publicly available at
[14] under the Eclipse Public License v1.0.

V. EVALUATION

Re-usability of SDN applications has a cost in terms of
latency introduced by the Network Engine on the control
channel, affecting all the control messages exchanged between
the Network Application and the network elements, and in par-
ticular the installation of new flow table entries. We identified
two main sources of latency: (i) message serialization/deseri-
alization and (ii) composition mechanism. In this section we
evaluate the consequences of these operations on the data plane
by measuring the Round Trip Time (RTT) of ICMP packets.

A. Methodology

Experimental Setup. The hardware used for the evaluation
consists of a commodity PC equipped with a Intel i7-5600U
quad-core CPU running at 2.60GHz and 16GB of DDR3
memory working at 1600Mhz. We run the Network Engine
on Mininet [19] configured with a single-switch, OpenFlow
1.0 network and two virtual hosts attached to it.
For evaluation purposes, we force the emulated switch to send
the packets to the Network Engine before forwarding them.
This allows us to estimate how the Engine’s operations affect
the installation of flow entries onto the switch’s flow tables.

Network Engine. We evaluate the Network Engine with
modules running on client controllers only. This simplified
configuration is sufficient to accurately measure the perfor-
mance of all implemented components.

Metric. As anticipated above, we evaluate the efficiency of
the Network Engine by measuring the RTT of ICMP packets
exchanged between the two hosts in the emulated network.
Since all the packets go through the Network Engine before
being forwarded, the measured RTT values include twice the
delay caused by the Network Engine’s operations, once for
each direction of the communication.

Please note that tests described in Sec. V-B and Sec. V-C
are performed at 20 ICMP pkt/sec. Thus, 40 PACKET_IN-
FLOW_MOD transactions per second, which corresponds to 40
new flows per second.

B. Serialization/Deserialization

Serialization/deserialization operations are performed by
all the Network Engine’s layers to convert control messages
from controller’s NBI format into byte arrays and vice-versa.
If we disable composition, we count five serializations and
five deserializations for each event-action transaction between
a network element and the SDN application. Five times more
than common controller frameworks like Ryu and Floodlight.
Since the result of this evaluation depends on how such func-
tions are implemented, we measure the latency with different
combinations of client and server controller frameworks.

 0

 2

 4

 6

 8

 10

 12

No Network Engine Ryu ONOS OpenDaylight

A
v
e
ra

g
e
 R

T
T

 (
m

s
)

Server Controller Platform

3.18 3.36

6.76 6.88

8.56 8.98
8.36 8.51

Ryu
Floodlight

Fig. 8: RTT measured with different combinations of client-
server controller frameworks.

Plot in Fig. 8 shows how the RTT of ICMP packets
is affected by the serialization/deserialization operations per-
formed on PACKET_IN and FLOW_MOD OpenFlow messages.
Performance of stand-alone Ryu and Floodlight controllers are
shown in Fig. 8 (“No Network Engine” cluster) as a reference.
As expected, the RTT values are higher when the emulated
network is controlled by the Network Engine. Nevertheless, in
the worst case (Floodlight-ONOS combination) the additional
delay for the installation of a new flow entry is 2.8ms on
average, which is acceptable for operational networks.

C. Composition

We compare the performance of composed SDN applica-
tions with what we call “merged SDN applications”. Thus, we
run SDN modules on the Network Engine composed either
in parallel or in sequence and we measure the RTT. Then,
we merge the code of such SDN modules into a single SDN
application and we run it on the Network Engine with the
composition disabled. The difference in performance measures
the cost of the composition.

Fig. 9 shows the CDF of the measured RTT for monitoring
and L2 forwarding modules composed in parallel or merged
into a single SDN application.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 1 10 100

C
u
m

u
la

ti
v
e
 P

ro
b
a
b
ili

ty

Round Trip Time (ms)

Merged application avg. RTT: 6.71ms
Composed application avg. RTT: 7.47ms

Merged application
Composed application

Fig. 9: Cumulative probability of the RTT for monitoring and
L2 forwarding modules, either merged or composed in parallel.

We observe that parallel composition increases the RTT
approximately by 700µs on average, i.e. by 350µs on average
the one-way flow setup.

Fig. 10 shows the performance results of Network Address
Translation (NAT) and L3 forwarding modules composed
in sequence or merged into a single SDN application. In
case of sequential composition, the one-way time increases
approximately by 1.2ms. Please note that values obtained with
the composed application include the time spent for the two
sequential interactions between the Core and the two SDN
modules to handle each ICMP packet.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 1 10 100

C
u
m

u
la

ti
v
e
 P

ro
b
a
b
ili

ty

Round Trip Time (ms)

Merged application avg. RTT: 6.81ms
Composed application avg. RTT: 9.35ms

Merged application
Composed application

Fig. 10: Cumulative probability of the RTT for NAT and L3
forwarding modules, either merged or composed in sequence.

From results shown in Fig. 9 and 10, we can conclude that
the impact of the composition on the new flow installation
process is negligible. We expect it may increase with the
number of modules, but it is a performance penalty that can be
tolerated when considering the effort that would be needed to
re-implement all modules for a different controller framework.

VI. CONCLUSION

In this paper, a novel SDN component called Network
Engine has been proposed to perform rapid deployment of
existing SDN applications belonging to different controller
frameworks on operational SDN-based infrastructures. A pre-
liminary version of such component has been implemented in a
real prototype and several tests have ben performed in realistic
scenarios to show how it may impact network operations. This
allows us to conclude that composing a control application out
of existing modules is feasible, even if the modules were writ-
ten for different controller frameworks. Network administrators
can not only reuse their existing applications when migrating
between SDN platforms, but can chain heterogeneous modules
to form more complex network control applications.

With the full NetIDE environment, which includes a full
software development environment for composed network ap-
plications, we are providing network operators with the toolbox
that will enable them to implement DevOps principles in their
environments. This will shorten the time-to-market for services
based on NetIDE Network Applications and reduce the cost
of developing them.

ACKNOWLEDGMENTS

The authors wish to thank Alexander Leckey, Antonio Mar-
sico, Arne Schwabe and Giuseppe Petralia for the preliminary
implementation of the Network Engine. The authors also thank
Sergio Tamurejo and Raúl Álvarez Pinilla for their valuable
support in the testing phase. The work presented in this paper
has been partially sponsored by the European Union through
the FP7 project NetIDE, grant agreement 619543.

REFERENCES

[1] “OpenDaylight - A Linux Foundation Collaborative Project,”
http://www.opendaylight.org.

[2] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide,
B. Lantz, B. O’Connor, P. Radoslavov, W. Snow, and G. Parulkar,
“ONOS: Towards an Open, Distributed SDN OS,” in Proceedings of
the Third Workshop on Hot Topics in Software Defined Networking,
ser. HotSDN ’14, New York, NY, USA, 2014, pp. 1–6.

[3] “Ryu SDN framework,” http://osrg.github.com/ryu/.
[4] “NetIDE Project,” http://www.netide.eu.
[5] R. Sherwood, M. Chan, A. Covington, G. Gibb, M. Flajslik, N. Hand-

igol, T.-Y. Huang, P. Kazemian, M. Kobayashi, J. Naous, S. Seethara-
man, D. Underhill, T. Yabe, K.-K. Yap, Y. Yiakoumis, H. Zeng,
G. Appenzeller, R. Johari, N. McKeown, and G. Parulkar, “Carving
Research Slices out of Your Production Networks with OpenFlow,”
SIGCOMM Comput. Commun. Rev., vol. 40, no. 1, pp. 129–130, Jan.
2010.

[6] A. Al-Shabibi, M. De Leenheer, M. Gerola, A. Koshibe, G. Parulkar,
E. Salvadori, and B. Snow, “OpenVirteX: Make Your Virtual SDNs
Programmable,” in Proceedings of the Third Workshop on Hot Topics
in Software Defined Networking, ser. HotSDN ’14, 2014, pp. 25–30.

[7] X. Jin, J. Gossels, J. Rexford, and D. Walker, “CoVisor: A Compo-
sitional Hypervisor for Software-defined Networks,” in Proceedings
of the 12th USENIX Conference on Networked Systems Design and
Implementation, ser. NSDI’15, 2015, pp. 87–101.

[8] A. Dixit, K. Kogan, and P. Eugster, “Composing Heterogeneous SDN
Controllers with Flowbricks,” in 22nd IEEE International Conference
on Network Protocols, ICNP 2014, Raleigh, NC, USA, October 21-24,
2014, 2014, pp. 287–292.

[9] J. C. Mogul, A. AuYoung, S. Banerjee, L. Popa, J. Lee, J. Mudigonda,

P. Sharma, and Y. Turner, “Corybantic: Towards the modular compo-
sition of sdn control programs,” in Proceedings of the Twelfth ACM
Workshop on Hot Topics in Networks, ser. HotNets-XII, 2013, pp. 1:1–
1:7.

[10] Open Networking Foundation, “TR-502: SDN architecture,”
https://www.opennetworking.org/images/stories/downloads/sdn-
resources/technical-reports/TR SDN ARCH 1.0 06062014.pdf,
2014.

[11] R. Doriguzzi-Corin, E. Salvadori, P. A. Aranda Gutiérrez, C. Stritzke,
A. Leckey, K. Phemius, E. Rojas, and C. Guerrero, “NetIDE: Removing
Vendor Lock-in in SDN,” in Network Softwarization (NetSoft), 2015 1st
IEEE Conference on, April 2015, pp. 1–2.

[12] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford,
A. Story, and D. Walker, “Frenetic: A Network Programming Lan-
guage,” in Proceedings of the 16th ACM SIGPLAN International
Conference on Functional Programming, ser. ICFP ’11, 2011, pp. 279–
291.

[13] C. Monsanto, J. Reich, N. Foster, J. Rexford, and D. Walker, “Compos-
ing Software-defined Networks,” in Proceedings of the 10th USENIX
Conference on Networked Systems Design and Implementation, ser.
nsdi’13, 2013, pp. 1–14.

[14] “Network Engine source code,” https://github.com/fp7-netide/Engine.
[15] “Apache Karaf,” http://karaf.apache.org.
[16] “OpenFlowJ Loxi,” https://github.com/floodlight/loxigen/wiki/

OpenFlowJ-Loxi.
[17] “OpenDaylight OpenflowJava,” https://github.com/opendaylight/

openflowjava.
[18] “Python struct,” https://docs.python.org/2/library/struct.html.
[19] “Mininet,” http://mininet.org.

